谷底沖積地の自由蛇行河川における護岸・根固の 現地調査と二・三の考察

FIELDING INVESIGATION ON BANK PROTECTION OF NATURAL MEANDERING RIVER AT MOUNTAIN ALLVIAL LAND

三品 智和¹·須賀 如川³·助川 純一郎²·古川 保明²

Tomokazu MISHINA, Nyosen SUGA, Junichirou SUKEGAWA, Yasuaki KOGAWA

¹正会員 工修 中央技術株式会社 河川チーム (〒310-0902 茨城県水戸市渡里町 3082 番地) ²正会員 中央技術株式会社 河川チーム (〒310-0902 茨城県水戸市渡里町 3082 番地) ³フェロー員 工博 宇都宮大学名誉教授 河相工学研究堂 (〒276-0023 千葉県八千代市勝田台 4-2-4 番地)

Improvement in the consciousness of disaster prevention of floods and matters of crisis evasion are points of interest. In this study, detailed field investigation is conducted for natural meandering river at mountain alluvial land, and the nature of meandering pattern and influence to river structures were investigated.

Especially, the importance of maximum megalith was indicated as that meandering is easily occurred where the large megalith deposits and the scale of local scour becomes large around it. Main results obtained in this paper a scale of local scouring is large in the part where large megaliths deposits, and meandering is occurred easily. The plum bank protection should be carried out based on the meandering characteristics control by megalith deposit.

Key word: fielding investigation, bank protection, mountain alluvial land, Yosasa river and Kuro river

1.はじめに

洪水に対する防災性の向上と危機回避の重要性はいっ そうの高まりを見せている.ここでは,護岸・根固工等 の河川構造物の安全度及び管理技術の向上を図るための 基本的知見を得ることを目的として,谷底沖積地の自由 蛇行河川を取上げ,その蛇行形態の性状と構造物に対す る影響について考察を行った.さらに,これまで軽視さ れがちであった大径河床礫や巨石の重要性を指摘した.

本論文では,まず大径河床礫群(1mオーダー)によって, 河川流路が変更した事例として,鬼怒川支川の大谷川を 取上げ,大径河床礫群の蛇行形態に及ぼす影響とその実 態について述べ,さらに同一水源地で同程度の流域面積 を持つ,谷底沖積地河川の那珂川支川余笹川と黒川を取 上げ,沖積形状,河床勾配及び河床材料等が蛇行形態と その安定度に与える影響について考察を行った.

特に,現地調査では大径河床礫の縦断変化を含む詳細 調査を行ったが,その理由は次のようである.すなわち, 蛇行の構成要因である砂州や砂礫堆は,ポイントバーを 除き,縦断的に平衡状態では無く,その不安定要因の一 つに今まで軽視されてきた大径河床礫(巨石を含む)の 存在がある.実際に大径河床礫は,動きの鈍い砂州やア ーマーコートの形成に強い影響をもっている.一方,最 近では生態系に配慮した多自然工法が採択され,河道内 の大径河床礫を用いた護岸等が多く見られる.大径河床 礫の採取は,今後の蛇行形態変化に影響し,河道の不安 定の度合を増大させる.そのため,本論文では,大径河床 礫に注目している.

2.大径河床礫が蛇行形態に及ぼす影響とその事例

ここでは,大径河床礫群が蛇行形態に及ぼす影響を, 鬼怒川支川の大谷川を事例に取り,その実態について述 べる.大谷川は,中禅寺湖を水源とし,日光市と今市市 を流下し鬼怒川に合流する流域面積 125.5km²,流路延長 29.5km 河床勾配1/120~1/35の急流河川である(図-1). 河道特性としては,日光火山群(男体山,女峰山,赤薙 山)による土砂生産化の影響を直接受けているため流出 土砂量は大きく,大谷川左岸沿いに上流から荒沢,田母 沢及び稲荷川等があるが,その中でも稲荷川からの流出 土砂量は極めて大きい.

大谷川は,以前大谷橋付近(鬼怒川合流点から約9km) より左岸側に曲折し古大谷川を流下し,現在の鬼怒川合 流点より約4km上流側で合流していた.図-2は,河道内 の大径河床礫の密度と最大巨石径の縦断変化を示したも のである.なお,測定方法については,大径河床礫密度 は河道内に25m²(5m×5m)の面積格子を設置し,大径河

床礫(50cm以上)数を測定し,最大巨石径は目視により河 道内に存在する最大巨石を判別し3点法にて巨石径を測 定した.図より,大径河床礫密度は大谷橋付近で最大値 を示し,その下流側では極端に密度が小さい.また,最大 巨石径は大谷橋付近を境に上流側と下流側では明確な巨 石径差が生じ,上流側が大きい.これは,過去の土石流の 発生によるもので,大谷橋付近が土石流の終端部のため 大径河床礫群が集合していると考えられる.

以上のことから大谷橋付近で過去に河川流路が変更し た理由は次のように推測できる.すなわち,大径河床礫 の密度が大きい個所では,河床礫集合堆積部周辺の局所 洗掘規模が大きく,それに基づく蛇行が生じ,流路変更 したものと考えられる.

2. 谷底沖積地河川の自由蛇行形態

- 余笹川及び黒川の場合 -

(1)流域概要

余笹川及び黒川は共に那珂川の支川で那須火山の朝日 岳(1896m)を水源としている.余笹川は,流域面積118km², 幹川流路延長30kmに対し,黒川は,流域面積94km²,幹 川流路延長42kmの河川である.なお,余笹川は黒川合流 点より上流側,黒川は三蔵川合流点より上流側の値であ る.また,調査区間の縦断図及び河床勾配は,図-3に示 した通りである.

河道特性としては,過去数百年オーダーで蛇行変遷を 繰返し,河岸段丘を発達させている.さらに,山地部か らの供給土砂量は少ないが,側方侵食あるいは新水路形 成により多くの生産土砂量を供給しており,極端な河床 低下や局所洗掘のないことがこれまでの調査で明らかと なっている¹¹²⁾.

図-4は,最大巨石径の縦断変化を約2km ピッチで示したものである.なお,調査方法については,大谷川現地調査と同様である.図より,余笹川は上流側ほど大きく, 黒川に比べ最大2m程度大きい.一方黒川では,1~2m範囲に収まり縦断変化はあまりない.また,余笹川山地部24~31km(大谷開拓橋付近)では,明確な巨石径の縦断的不規則性が生じている.これは,昔の土石流によるものと考えられ,今も土石流堆が現存している.これに対し, 黒川では明確な巨石径差はないようである.

(2) 蛇行形態と植生繁茂による河道の安定度合

図-5は,余笹川及び黒川における縦断的な沖積幅及び 沖積地内の流路位置を左岸側沖積端基準で示したもので ある.図より,沖積幅は全体的に余笹川が黒川に比べ大 きい.特に余笹川では19km及び4km付近下流側で大きく

図-5 洪水流による樹木流失面積と沖積幅及び沖積地内流路位置との関係

拡幅している.これは,上流部(19km)が四ツ川・多羅沢 川,下流部(4km)は黒川・那珂川とそれぞれ合流している 影響と考えられる.黒川は下流部(5km)の三蔵川合流以外 に大きな支川合流は無く,沖積幅の大きい拡幅はみられ ない.

沖積地内の流路位置は,余笹川では,上流より10kmまで,縦断的に不規則,かつ沖積地中央部での蛇行区間が 多く,その後は5kmまで沖積地全幅を直線的に横断する 蛇行となり,再び那珂川合流点までは不規則蛇行をして いる.一方黒川では,上流から25kmまで不規則蛇行をし, その後,沖積地端(山沿い)流下区間(21.5~23.5km),沖 積地中央部での蛇行区間(13~19km)と経た後,余笹川合 流点まで沖積地全幅を直線的に横断蛇行をしている.

次に植生繁茂による河道の固定化とその安定度につい て述べる.図-5 に平成10年洪水流による樹林流失面積を 示した.なお,平成10年洪水はこの地域にとっては60 年振りの大洪水で,最大時間雨量90mm,日雨量607mmと これまでの既往最大時間雨量44mm,日雨量20mmを遥かに しのぐ記録的豪雨であった.また,両河川共に洪水前はほ ぼ全川に亘り,両河岸に植生が繁茂していた. 図より,余笹川は全川に亘り樹木が流失し,その全流 失量は0.41km²,黒川は23~35km(延長10km)で顕著な樹 木流失があり,全流失量0.15km²であった.両河川共に沖 積地中央部での蛇行区間は,流れの直進性により顕著な 樹木流失が生じた.なお,一部黒川の沖積地中央部での 蛇行区間(13~19km)に限っては,既に護岸が施工され ていたため,樹木流失が無かった.

このように洪水前の両河川の蛇行形態と河道の安定度 合として,沖積地中央部での蛇行区間は,平成10年規模の 大洪水に対して植生繁茂による河道の固定化は難しいよ うである.すなわち,この区間に限っては,植生繁茂によ リ中小洪水以下の出水に対して,見かけ上の安定河道で あることが考えられる.一方,黒川下流部(13km下流側) に代表される沖積地端(山付き)の流下区間では,平成10 年規模の大洪水に対しても,樹木流失が小さく,植生繁茂 による河道維持の期待は大きく,安定した河道であると 考えられる.

3. 河道レジームの縦断変化

(1)蛇行形態の分類

図-6は,図-5の沖積地内流路位置を沖積幅に対する割 合で沖積地左端を基準に示したものである.例えば,0% 及び100%は沖積端の流下を示し 50%近傍は沖積地中央部 の流下を意味する.

図より,両河川の蛇行形態を沖積地内流路位置から判

別すると,以下の4通りに分類できる(図-7参照).

- a. 沖積地中央部での蛇行区間 [対象区間:余笹川 下流部(0~5km)]
- b. 沖積地全幅を直線的に横断蛇行する区間 [対象
 区間:余笹川中流部(5~10km),黒川下流部(5~13km)]

- c. 沖積地端(山沿い)流下区間 [対象区間:図-6に 番号記入]
- d. 沖積地中央部蛇行と沖積地端部との直線的な横
 断蛇行とが存在する区間 [対象区間:余笹川上
 流部(10~20km),黒川上流部(13~35km)]

以上のことから,沖積地全幅を直線的に横断する蛇行 区間(b)については,余笹川中流部は黒川下流部に比べ, 単位長当りの蛇行数が少なく,縦断的に蛇行波長が大き いことがわかる.また,沖積地端部(山沿い)を流下する 区間(c)については,余笹川では上流区間で多く存在し, 最大沖積端流下距離は1kmである 黒川は全川に亘り処々 に存在し,かつ上流部は沖積端流下距離が大きく,最大 沖積端流下距離3kmである.

(2) 蛇行形態と沖積地形状の関係

図-8 は,沖積地内流路位置と沖積地及び流路の曲率半 径の縦断変化を示したものである.なお,曲率半径は, 沖積地及び流路の中央部位置の値である.なお,余笹川及 び黒川における各対象区間の沖積地平面形状は,表-1 に 示した通りである.

沖積地曲率半径Rと流路曲率半径rの関係については, 余笹川及び黒川共に,沖積地曲率半径が600m以下区間で は,流路曲率半径との相関性が高く,沖積地の縦断形状 に沿った流下をしている.また,沖積幅100m以下の狭窄 部個所並びに沖積曲率半径が600m以下区間は,沖積地端 (山沿い)を流下していることが認められた.

図-7 沖積地内流路位置からの蛇行形態分類

表-1 沖積地の平面形状

			沖積地平面形状
余 笹 川	下流部	a	直線的な形状(R=1400m以上)
	中流部	b	緩慢な形状(900 R 1200m)
	上流部	d	10~15km : 急峻な形状(600m 以下)
			15~20km:直線的な形状(R=1400m以上)
黒川	下流部	b	急峻形状(600m 以下)
	上流部	d	15~19km:直線的な形状(R=1400m以上)
			19~31km:不規則形状(100 R 1200m)

4. 蛇行パターンに関する考察

(1)沖積地全幅を直線的に横断蛇行する区間の蛇行特性

図-9 は,最大巨石径と沖積地曲率半径の関係を蛇行形 態別に示したものである.

沖積地全幅を直線的に横断する区間は,最大巨石径は 全体的に小さく 0.5~1.6m で,比較的粒径の小さい材料 がそろった区間である.

ここで,最大巨石径と河道内巨石密度の関係について, 現地踏査より,最大巨石径の大きい個所は,最大巨石径 に近い巨石が顕著に存在することから,最大巨石径と河 道内巨石密度は比例関係にあると推定できる.よって, この区間は最大巨石径が1.6m以下と全体に比して小さく, 河道内巨石密度も小さい.そのため,巨石集合堆積部周 辺の局所洗掘の規模が小さく,かつ洪水流が射流を呈す るため,流路形状は直線性を増し,沖積端(山沿い)によ る強制屈折で蛇行が生じると考えられる.

また,この区間の蛇行波長は,沖積地の曲率半径に強 く影響している.最大巨石径範囲はほぼ同程度であるが, 沖積地曲率半径は余笹川の方が高い値を示している.こ れは,余笹川は沖積地曲率半径が大きいため,沖積地内 を縦断波長の大きい直線的な横断蛇行をするものと推定 できる.

(2)沖積地中央部蛇行区間の蛇行特性

沖積地中央部での蛇行区間は,最大巨石径が全体的に 大きく1.3~2.2mである(図-9).理由として,上述同様 に最大巨石径と河道内巨石密度が比例関係と仮定すれば, 河道内巨石密度は高いことが推定できる.すなわち,洪 水流が射流を呈し,かつ河道内巨石密度が大きい区間は, 巨石集合堆積部周辺の局所洗掘の規模は大きく,側方侵 食が顕著な余笹川及び黒川では,容易に蛇行を生じる. また,蛇行頻度は沖積地曲率半径が大きい場合に激しい 蛇行形成をする傾向がある.実際に黒川30km付近は,沖 積地曲率半径が大きく,直線的な沖積形状を持つ区間で, 沖積地内中央部を縦断的に複雑な蛇行を生じている.

沖積地端を流下する区間については,沖積地中央部での蛇行区間に属し,沖積地曲率半径は全体的に小さい. しかしながら,具体的な要因については不明確である.

5.谷底沖積地河川の自由蛇行形態に対応するための護岸・根固工のあり方

これまでの調査により,蛇行形態が巨石あるいは大径 河床礫によって,パターン化されていることが認められ, 今後の河川改修に反映させることの必要性が高いことを

示唆した.

ここでは,谷底沖積地河川における護岸・根固工等の 河川構造部のあり方について,余笹川及び黒川の現地調 査を通して考察を行う.災害復旧工事等に伴う河道拡幅, 護岸整備さらには河道内からの大径河床礫の採取は,今 後次のような河道変化及び危険性が生ずると考えられる.

河道内からの大径河床礫の採取は,縦断的に不整な 河床材料を構成し,不規則なアーマーコートの形成 を促進すると予測される.特に巨礫から中・粗礫へ の変化点では河床変動が著しく,河道内に新規蛇行 が生じ易い.

側方侵食が顕著な河川(余笹川及び黒川)において の護岸整備は,側方からの供給土砂量が減少し,河 床低下並びに水衝作用が増大する.特に水衝部では, 局部的に洗掘力が増大するため,護岸整備による側 方侵食の制限と併せ,鉛直方向の侵食作用が強調さ れるため,護岸の基礎崩壊の危険性が増大し,防止策 が必要である.

場所によっては河道拡幅により,中小洪水時の水位 低下,土砂運搬能力の減少,縦断的に不規則な土砂 堆積並びに河道内の新規蛇行形成の促進等があり, 急激な河床変動が想定される.

大洪水がしばらく発生しない中期的な想定をすると, 河道内にポイントバーや不安定砂州が急速に発達し, 旧河道への復元化や新規の深掘れ部の形成が考えられる.

このような河道変化及び危険性に対し,護岸・根固工 のあり方としては,護岸工・根固工の設置範囲は,今後 の蛇行変化に対応することが望ましく,また,護岸の根 入れ深さについては,技術基準では1~1.5mの範囲に設定されているが,護岸整備により側方侵食が制限された個所では,鉛直方向の侵食が容易となる.そのため,各地点の河道条件毎の強度評価が必要である.また,大洪水に対しては,ハザードマップ等が採用されているが, 具体的な対策案を提案する必要がある.

6.結 論

谷底沖積地河川における自由蛇行形態に対応する,護 岸・根固工等の安全度及び管理技術の向上を図るため詳 細な現地調査を行った結果,以下の基本的知見を得るこ とができた.

余笹川及び黒川の蛇行形態は,最大巨石径と沖積地 曲率半径の関係によって整理できることを明らかに した.

具体的には,河道内の大径河床礫割合が高い個所では,河床礫集合堆積部の局所洗掘規模は大きく,容易に蛇行を生じ,特に沖積地曲率半径が大きい場合は激しい蛇行を形成する.

逆に大径河床礫割合が小さい個所では,流路形状は 直線性を増し,沖積地境界線(山沿い)よる強制屈 折で蛇行を生じることが多いことがわかった.

沖積地全幅を直線的に横断蛇行する区間においては, 縦断的な蛇行波長は,沖積地の曲率半径に大きく依 存することが認められた.

河道内からの大径河床礫の採取は,本来の蛇行形態 を変化させ,かつアーマーコートの形成に影響を与 える.その結果,縦断的に不規則性が生じることが ある.

側方侵食が顕著な河川においての護岸整備は,側方 からの供給土砂量減少し,河床低下並びに水衝作用 を促進させる.

谷底沖積地河川に対応するための護岸・根固工のあ り方としては,設置範囲及び根入れ深さを留意する ことが大切であり,各地点の河道条件毎の強度評価 が必要である.

今後の維持管理において,大洪水の発生頻度及びその間の植生繁茂を留意し,非平衡状態で固定化した 河道状況の対応策を検討することが必要である.

参考文献

- 三品ら:余笹川の災害対策河道の河道特性に関する考察, 水工学論文集,第46巻,pp343~348,2002.
- 三品ら:余笹川災害改修河道の追加安全対策,建設コンサ ルタント業務・研究発表会,2002.

(2003.4.11 受付)